Data Driven prediction of forced nonlinear vibrations using stabilised Autoregressive Neural Networks

نویسندگان

چکیده

In this work, we propose a novel approach to the data-driven prediction of vibration responses nonlinear systems. The main idea is based on Autoregressive Neural Networks (ARNN) model transfer behaviour between an external excitation and system response. We autoregressive network architecture with embedded symmetry using bias-free tanh activation guarantee Input-to-State-Stability (ISS) by enforcing special penalty term weights. resulting training procedure analysed for example DUFFING oscillator white noise excitation. BAYESian optimisation, it found that beyond input-to-state-stability, stabilising also decreases sensitivity respect other parameters compared classical techniques. Furthermore, show stabilised ARNN able give excellent approximations response wide range intensities. contrast, linear models, such as models exogenous input (ARX) in time domain or functions frequency domain, will only find some approximation. particular, construction, they not be capture effects arbitrary amplitudes levels.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks

Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...

متن کامل

Data-Driven Flood Detection using Neural Networks

This paper describes the approaches used by our team (MultiBrasil) for the Multimedia Satellite Task at MediaEval 2017. For both disaster image retrieval and flood-detection in satellite images, we employ neural networks for end-to-end learning. Specifically, for the first subtask, we exploit Convolutional Networks and Relation Networks while, for the latter, dilated Convolutional Networks were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings in applied mathematics & mechanics

سال: 2023

ISSN: ['1617-7061']

DOI: https://doi.org/10.1002/pamm.202200318